
Micromachined Devices and Components, Proceedings of the SPIE, Vol 2882, Austin, TX, Oct 14-15, 1996.

Eaton 1

Release-etch modeling for complex surface micromachined structures

W.P. Eaton∗ and J.H. Smith
Integrated Micromechanics, Microsensors, & CMOS Technologies Department

R.L. Jarecki
Advanced Technologies for Sub 0.35 µm Processes Department

Sandia National Laboratories
Albuquerque, NM 87185-1080

Keywords: release etch, surface micromachining

ABSTRACT

A release etch model for etching sacrificial oxides in aqueous HF solutions is presented. This model is an extension of work
done by Monk et. al.  and Liu et. al. The model is inherently one dimensional, but can be used to model the etching of
complex three dimensional parts. Solutions and boundary conditions are presented for a number of geometries.

 1. INTRODUCTION

Knowledge of release-etch kinetics is essential for designing manufacturing processes for large surface micromachined
structures such as sealed diaphragms and cavities and flow channels. For these structures, etch ports can be on the top or the
sides (e.g Figure 1(f,g)). Using top etch ports is attractive since diffusion limitations from long lateral etch paths can be
eased. However, sealing these structures poses problems since the etch ports are generally lithographically defined,
requiring relatively large holes. As a result, thicker film depositions are required to provide a seal, and the possibility of
unwanted material deposition inside the cavity exists. Side etch ports, on the other hand, have heights controlled by film
thicknesses or etch depths, which can have dimensions smaller than lithographic feature sizes. Because of this feature,
sealing these structures is easier, but at the expense of longer etch times. Long etch times are undesirable from a
manufacturing point of view for two reasons: (1) they decrease device throughput through a fabrication facility, thereby
raising cost of manufacture and (2) they can potentially decrease device reliability due to etch selectivity problems.

For etching structures using either side or top etch ports, understanding the etch behavior for a given geometry can be
essential to the successful fabrication of a micromachined device. In this work, a simple one dimensional model is presented
which describes the etching of complex three-dimensional parts. These parts are shown in Figure 1. Etch kinetics of the
simplest etch structure, the rectangular etch port, have been presented in the literature 1,2, and are repeated in part in this
work for completeness.

 2. THEORETICAL FOUNDATIONS

Modeling of release etching in this work is based upon finding relationships among flux, concentration, and etch rate.
Figure 2 illustrates the conventions of the model, where δ(t) is the etch front position as a function of etch time. C

b
 and C(δ)

are the bulk and surface concentrations of HF, respectively. C(x,t) is the concentration of the solution anywhere in the etch
cavity at a given time. As the notation implies, concentration is not explicitly calculated as a function of time, but rather a
quasistatic approximation is used.

For etching oxides in aqueous HF solutions, the presumed overall reaction is
6HF + SiO2 ⇔ H2SiF6+2H20         (1)

The actual reaction path is known to be more complex1,3. For a stoichiometric reaction
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JSiO2
 = 

1
6 JHF (2)

Where J
SiO2

 and J
HF

 represent the fluxes corresponding to the removal of oxide at the etch front and transport of aqueous
HF to the etch front, respectively. The oxide etch front velocity is proportional to J

SiO2
(reference 4).

Vari
able

units description

α [cm³/mole] proportionality constant

A [mole/cm²] constant of integration

A1 [mole/cm²] constant of integration in region 1

A2 [mole/cm²] constant of integration in region 2

A3 [mole/cm²] constant of integration in region 3

B [mole/liter] constant of integration

C [mole/liter] concentration of HF

C0 [mole/liter] concentration at region 1/region 2
boundary

C1 [mole/liter] concentration in region 1

C2 [mole/liter] concentration in region 2

C3 [mole/liter] concentration in region 3

Cb [mole/liter] bulk etchant concentration

Cw [mole/liter] concentration at δ=rbp

δ [µm] position of etch fron at any time t

D [cm²/sec] diffusivity of HF in water

d1 [µm] width of rectangular etch port 1

d2 [µm] width of rectangular etch port 2

δbp [µm] “break point” radius at which all
bubbles join

φ – angle determined by number of etch
ports

γb – geometrical constant

γp [µm] geometrical constant

h1 [µm] height of rectangular etch port 1

h2 [µm] height of rectangular etch port 2

Jn [mole/
cm²·sec]

flux of species n

k2 [cm4/
mole·sec]

second order etch rate coefficient

kl [cm/sec] first order etch rate coefficient

L1 [µm] length of rectangular etch port 1

L2 [µm] length of rectangular etch port 2

MWn g/mole molecular weight of species n

θ – angle swept by etch front as etch
progresses

r [µm] radial coordinate

r0 [µm] arbitrary radius above which bubble
solution is valid

R0 [µm] radius of circular structure

t [min] time

t1 [min] etch time in region 1

t2 [min] etch time in region 2

u [µm/min] back flow velocity of etch products

x [µm] linear coordinate

(a) rectangular etch
port

(b) concentric circles

(e) port to port(d) port to bubble

(c) bubble

mechanical
layer

sacrificial
layer

(f) port to bubble to wedge (side etch structure)

(g)bubble to wedge (lid or top etch structure)

Figure 1. Possible geometric etch structures.  Simple structure
(a-c)are shown at top. More complex structures (d-g), shown
below, are formed by combining simple structures.
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HF solution

oxideC(x,t)

C(δ)

Cb

x
δ(t)0

Figure 2. Conventions for coordinates and concentrations of wet etch model. After refs  1
and 2.

dδ
dt  = JSiO2

MWSiO2

ρSiO2

 (3)

where MWSiO2
  and ρSiO2

 are the molecular weight and mass volume density of the oxide, which are 60 [g/mole] and 2.1
[g/cm³] for pure SiO2. Doped glasses should have similar values. It is preferable to account for only one species, namely HF.
To this end, Equations 2 and 3 are combined to yield

dδ
dt  = (α JHF ) x=δ

 α = 
1
6 

 MWSiO2

ρSiO2

 (4)

Fick’s first law is now invoked

J
HF

 = – D(∇C ) (5)

where D is the diffusion constant of HF, which has been measured to vary from 3.1·10 
–

 
5 cm2/sec for infinite dilution to

8.8·10 
–

 
6 cm2/sec for solutions of HF, H

2
SiF

6
, and water3. The flux is also assumed to take many empirical forms such as

J
HF

 = f(C) = 



k

1
C

k
2
C2

k
1
C + k

2
C2

kC 
n

                (6)

here the f(C) on the RHS represent only a few of the possible functional forms. Many of these have been examined by Monk
et al 3,4,5. According to Tai et al and Liu et al1,2 , JHF=k1C+k2C

2 is a good empirical choice for the functional form of the
etchant, and these kinetics are used in this work. There are several reasons for using such an empirical form:

• It describes the behavior of a wide range of concentration of etching solutions1,2.

• HF:H
2
0:Si02 reactions are more complex than indicated by  Equation 1 1,3

• The diffusivity, D, of HF is concentration dependent and therefore is expected to vary both spatially along a
given etch channel and temporally, as a release etch progresses.

• Doped glasses have different etch rates, and possibly different etch mechanisms, than their undoped
counterparts1,3.

First order kinetics often lead to analytical solutions, and hence can be useful for predicting general behavior. Second order
kinetics generally fit data better than first order kinetics, however analytical solutions are rarer; numerical integration is
often required. Numerical integrations can be performed with commercial mathematical software such as Mathematica™ 6,

Maple V™ 7, or MathCAD™ 8.
By the above three equations, the etch front velocity, dδ/dt, can be expressed as a function of concentration. To arrive

at a form for the concentration, the equation of continuity or mass balance is considered

u∇C + C
·
 = D∇2C C  x = 0; all t

 = Cb

C  x = δ; all t = C(δ)  C  all x; t=0 = Cb

JHF = – D 
∂C
∂x

x=δ
 =  f(C)

x=δ
(7)
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Where u and C
·
 are the flow velocity of the reactants and partial derivative of concentration with respect to time,

respectively. C
b
 is the bulk concentration of HF. In general it is very difficult to solve Equation 7 explicitly. It has been

demonstrated that for etching PSG, the convective term in Equation 7, (u∇C), can be neglected compared with D∇ 

2C
(reference 1). Furthermore it is assumed that this system can be considered quasistatic. That is, the instantaneous change of
concentration with time is presumed to be small, i.e.

C
·
 << D∇2C (8)

Thus Equation 7 is simplified to become

D∇ 2C=0 (9)
Which is Poisson’s equation. The quastistatic approximation is used for mathematically tractability and is commonly used
in heat and mass transfer problems .

For one dimensional linear and radial systems Equation 9 becomes
∂2C
∂x2  = 0

 
1
r 

∂
∂r



r 

∂C
∂r  = 0

 (10)

and has general solutions
C(x) = Ax + B
C(r) = A lnr + B  (11)

For the linear case, a boundary condition of C(0) = C
b 

 is usually chosen. For the radial case, C(0) is undefined. Therefore
an arbitrarily small radius r

0
 is chosen so that the boundary condition becomes C(r

0
) = C

b
. Therefore Equations 11 become

C(x) = Ax + Cb

C(r) = A ln



r

r0
 + Cb

 (12)

All of the above equations, along with additional boundary conditions, form a framework for solving for concentration
and etch rate. The constant A is generally determined by a flux boundary condition which is unique to the geometry. In the
following sections several examples of potentially useful structures will be presented, with solution for both first and second
order etch kinetics. Simple geometries are considered first, and are then combined with each other. Constants are
summarized in Table 3.

 3. SIMPLE GEOMETRIES

 3.1 Rectilinear etch port open at one end

A schematic of a rectilinear etch channel open at one end with width d, height h, and length L is shown in Figure 1(a).
This is the simplest case of an etch structure and is modeled as a one dimensional problem with the longitudinal cross
section of Figure 2. For this geometry, the first of Equations 12 is the appropriate form for the concentration. To solve for A,
a flux boundary condition from Equation 5 is invoked

JHF = – D 
∂ C

 ∂ x x=δ
 = – DA (13)

Parameter Value [Units] Reference
D 1.6·10 

–5 [cm2/sec] [1,2]
 ρ

SiO2 2.1 [g/cm3] [1,2]
α 4.8 [cm3/mole]
C

b
24 [mole/liter] [3]

k1 1.2·10 
–

 
4 [cm/mole·sec] [1,2]

k
2 .065 [cm4/mole·sec] [1,2]

Table 3. Constants used for etch model calculations.
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Since we are presuming the empirical form JHF=k1C+k2C
2, Equation 13 becomes

– DA = k1C(δ) + k2C(δ)2 (14)
Substituting C(δ) rearranging:





– 

1
D k2δ2  A2 + 



– 

1
D( )k1δ + k2δ 2  – 1 A – 

1
D ( )k1Cb + k2Cb

2  = 0 (15)

Solving for A:

                      A =   





 
– 

1
2k2δ2 



 

 D + (k1δ + k2Cb)δ + k1
2δ2 + ( )2Dk1 + 4CbDk2 δ + D2 

– 
1

2k2δ2 



 

 D + (k1δ + k2Cb)δ – k1
2δ2 + ( )2Dk1 + 4CbDk2 δ + D2 

                            (16)

Only the second root of A satisifies the boundary condition C(0)=Cb; the concentration becomes

C(x) = 








 – 
1

2k2δ2 



 

 D + (k1δ + k2Cb)δ – k1
2δ2 + ( )2Dk1 + 4CbDk2 δ + D2 x + Cb (17)

Usually, it is C(δ) that is of interest rather than C(x):

C(δ) = 
k1

2δ2 + 



 

 2Dk1 + 4CbDk2  δ + D2  – D – k1δ 

2k2δ
 (18)

The etch rate is given by
dδ
dt    = – αDA

      = αD 








  
1

2k2δ2 



 

 D + ( )k1δ + 2k2Cb δ – k1
2δ2 + ( )2Dk1 + 4CbDk2 δ + D2 

      = 
α

2k2
 



D

δ
2

 







1 + 



 

 k1δ + 2k2Cb  
δ
D – k1

2 



δ

D
2

 + 



 

 2k1 + 4Cbk2  
δ
D + 1 

 (19)

It is generally simpler to solve for t(δ) instead of δ(t). If Equation 19 is integrated with time going from 0 to t and etch front
position going from 0 to δ, t(δ) becomes

t(δ) = 
k2



 





D

k1
2 – 

δ2

D – 
β

k1
2 η – 2δ – β 

δ
D

α



 

 k1
2 – η2

 – 
k2D ln



k1β + k1

2δ + ηD
D(k1 + η)
αk1

3  

η = k1 + 2Cbk2               β = 2ηδD + k1
2δ2 + D2

 (20)

Equation 20 can be plotted with t on the horizontal axis and δ on the vertical axis, as shown in Figure 5(a). The slope of the
curve is the etch rate, which starts at a high value and decreases as the etch progresses. The etch behavior of the port and
other simple structures is discussed in more detail in Section 3.4.

 3.2 Bubble solution

The bubble etch is shown in Figure 1(c) and Figure 4. This model can be used for etching any part of a circle from its
center.  In this model, it is assumed that an infinite supply of etchant is present at r0 (i.e. at r=r0, C(r)=Cb). Therefore the
second of Equations 12 is the appropriate form of concentration. Applying a flux boundary condition

JHF = – D 
∂C
∂r r=δ

 = – D 
A
r r=δ

 = k1C + k2C
2

r=δ

⇒ – D 
A
δ = k1





A ln



δ

r0
 + Cb  + k2





A ln



δ

r0
 + Cb

2

 (21)

solving for A



Micromachined Devices and Components, Proceedings of the SPIE, Vol 2882, Austin, TX, Oct 14-15, 1996.

Eaton 6

                
A = 

1

2 
δ
D k2 



ln



δ

r0

2 









 – 1 – (k1 + k2Cb) 

δ
D ln



δ

r0

 + k1
2 



δ

D

2

 



ln



δ

r0

2

 + 2 (k1 + 2k2Cb) 



δ

D  ln



δ

r0
 + 1  

 

                     (22)

This form of A can then be substituted into the second of Equations 12 to obtain the concentration profile

C(δ) = 
1

2 
δ
D k2 ln



δ

r0

 









 – 1 – (k1 + k2Cb) 

δ
D ln



δ

r0
 + 

k1
2 



δ

D

2

 





ln



δ

r0

2

 + 2 (k1 + 2k2Cb) 



δ

D  ln



δ

r0
 + 1  

 + Cb (23)

It is difficult to solve for t(δ) analytically, but it  is given symbolically by

t(δ) = 

⌡


⌠

 r0

 δ 
 

1

– α 



 

 k1C(δ) + k2(C(δ))2
 dδ   (38)

 A numerical solution is plotted in Figure 5(b). The etch behavior is discussed in Section 3.4.

Top view

Cross section

δ

r0

R0

structure

r

R0

δδ

Top view

Cross section

sacrificial
oxide

Figure 4. Schematic of bubble (left) and concentric circles (right) etches.

 3.3 Concentric circles

Figure 4(right) shows a schematic for etching a circular part from its outside edges. This figure describes a part that
will float away after release. A real part would be anchored to the substrate in the middle or at points around the periphery.
For this geometry, the supply of etch comes from the edge of the structure, so that C(R0)=Cb . Hence, the second of
Equations 12 becomes

C(r) = A ln



r

R0
 + Cb (25)

and the flux can be rewritten as

JHF = –D 
∂C
∂r r=δ

 = –D 
A
r r=δ

 = – ( )k1C + k2C
2

r=δ
 (26)

Substituting C(r) from Equation 25,  A can be solved
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A = 
1

2R0 





 ln



δ

R0

2
 





1 – η 

δ
D ln



δ

R0
 

– k1
2 



δ

D
2







 ln



δ

R0

2

 – 2η 
δ
D ln



δ

R0
 + 1     

(27)

Substituting A back into Equation 25 and simplifying yields

C(δ) =  
1

2R0 





 ln



δ

R0

 





1 – η 

δ
D ln



δ

R0

 – k1
2 



δ

D
2







 ln



δ

R0

2

 – 2η 
δ
D ln



δ

R0
 + 1  

 + Cb (28)

An analytical solution for the etch time, t(δ), cannot be found. Symbolically, t(δ) is given by

t(δ) = 

⌡


⌠

 R0

 δ 
 

1

– α 



 

 k1C(δ) + k2(C(δ))2
 dδ   (29)

A numerical solution for t(δ), transformed so that zero etch distance is at the edge of the structure, is plotted in Figure 5(c).

 3.4 Discussion: simple geometries

Each of the simple geometries behaves differently, due largely to changes in the etch front area. For the port solution,
the etch front area is considered constant. In the bubble solution, however, the etch front area is continually increasing ~ r2 .
Hence the etch distance vs time rollover in Figure 5 is more pronounced for the bubble solution, since diffusion limitations
are more severe. The concentric circles solution faster etch rates. Due to the large perimeter of this geometry, diffusion
limitations are not as severe as the port and bubble geometries. Furthermore, the etch starts off fast, slows down, and then
speeds up again. The etch front area is continually decreasing for this case. As the etch front area decreases, it requires less
HF to propagate the etch. For these kinetics, once the etch front area becomes small enough more HF can be supplied to the
etch front and the etch rate increases.
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Figure 5.  Etch distance vs. Etch time for simple geometries: (a) rectangular etch port, (b) bubble, and (c) concentric
circles. The slope of these curves is the instantaneous etch rate.

 4. COMPLEX GEOMETRIES

While the preceding simple solutions can be useful on their own, joined solutions enable the modeling of structures
that are more likely to be used to make a device. Such is the case for a structure that has small etch ports which lead to a
larger chamber. This sort of scheme can be beneficial for creating sealed cavity microstructures9,10. By modifying boundary
conditions of the simple solutions, a variety of complex structures can be examined.

 4.1 Joined ports

The first example is that of two differently sized etch ports, as shown in Figure 1(e), with different widths, d1 and d2,
heights, h1 and h2, and lengths, L1 and L2. The subscripts 1 and 2 refer to the region being etched and should not be
confused with the subscripts for k1 and k2, which denote first or second order etch kinetics. To simplify the mathematics, the
origin of the one dimensional coordinate system is initialized to zero for each etching regime.
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For etching through the first etch channel the kinetics from Section 3.1 can be used without modification. For etching
into the second channel, the solutions are similar. In the concentration equations, Cb is replaced by C0, which is the
concentration at the mouth of the second channel and is a function of δ. Hence an additional boundary condition is invoked
to solve for C0 , i.e. C2(0) = C0 and Equations 18 and 18 are modified to become

C2(x) = 








 – 
1

2k2δ2 



 

 D + (k1δ + k2C0)δ – k1
2δ2 + ( )2Dk1 + 4C0Dk2 δ + D2 x + C0 

C2(δ) = 
k1

2δ2 + 



 

 2Dk1 + 4C0Dk2  δ + D2  – D – k1δ 

2k2δ

(30)

The function C0 can be evaluated by applying a total mass flux boundary condtion





 

 Total mass flux 1 = 



 

 Total mass flux 2 (31)

which leads to
  J1·Area1 = J2·Area2 





– D

∂C
∂x x = L1

 ·(d1h1) = 



– D

∂C
∂x x = δ

 ·(d2h2)
(32)

Once etch channel 1 has completed etching, the concentration profile in this channel is presumed to be linear, with one
endpoint fixed at Cb and the other at C0(δ) so that Equation 32 becomes





C0 – Cb

L1
 d1h1 = – 



– 

1
2k2δ2 



 

 D + (k1δ + k2Cb)δ – k1
2δ2 + ( )2Dk1 + 4CbDk2 δ + D2 d2h2  (33)

The linear concentration profile assumption comes from a diffusion model1. C0(δ) can now be solved

C0(δ) = 

2k2δ2Cb – γp









 

 (k1 – 2k2Cb) δ + k1γpD

  – k1
2(δ + γp )

2 + 2D(δ + γp )(k1 + 2k2Cb) + D2 

2k2(δ + γp )
2  (34)

where γp is given by

γp = 
d2h2

d1h1
 L1 (35)

which leads to the formula for the concentration

C2(δ) = 
1
4 



k1

k2

2

 + 
1

2k2
2 



D

δ 



 

  k1 + 2k2C0(δ)  + 
1

4k2
2 



D

δ
2

  – 
k1

2k2
 – 

1
2k2

 
D
δ  (36)

One of the characteristics of the port to port solution is that there is a discontinuity in the concentration between regions 1
and 2.  This is a consequence of the one-dimensional nature of the solution, and the resultant etch time accuracy is not
expected to be adversely affected. The etch time equation is similar to previous equations, with an additional t1(L1) term to
assure a continuous t(δ). The etch time in the second port, t2(δ) is given symbolically by

t2(δ) = 
⌡

⌠

0

δ

 
1

α [k1C2(δ) + k2(C2(δ))2]  dδ + t1(L1) (37)

A numerical solution is plotted in Figure 9(a), and the behavior is discussed in more detail in Section 4.5.

 4.2 Port to bubble

The port to bubble solution is shown schematically in Figure 1(d). The solution for C2(δ) is similar to the original
bubble solution, except Cb must be replaced by C0(δ ), i.e.
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C2(δ) = 
1

2 
δ
D k2 ln



δ

r0

 









1 – (k1 + k2C0(δ)) 

δ
D ln



δ

r0

 + k1
2 



δ

D

2

 





ln



δ

r0

2

 + 2 (k1 + 2k2C0(δ)) 



δ

D  ln



δ

r0
 + 1  

 (38)

as in the joined ports solution, C
0
(δ) is solved by a total mass flux boundary condition. The boundary condition is

  J1·Area1 = J2·Area2 





– D

∂C
∂x x = L1

 ·(d1h1) = 



– D

∂C
∂r r = δ

 ·(πδh2) 





C0 – Cb

L1
 d1h1 = – πh2A2 

 (39)

A2 is similar to Equation 22, except C0 must be substituted for Cb. Making this substitution and solving for C0 gives

C0(δ) = 






2Cb 

k2

γb
 
δ
D 





 ln



δ

r0

2

 – (k1 – 2k2Cb)



δ

D  ln



δ

r0
 – γbk1 

δ
D – 1 +







k1 
δ
D ln



δ

r0
 + k1γb



δ

D  
2

 + 2(k1 + 2k2Cb)



δ

D 



γb +  ln



δ

r0
 + 1

 

2γbk2 
δ
D 





1 + 
1
γb

 ln



δ

r0

2

 
  (40)

where γb is given by

γb = 
πh2

d1h1
 L1 (41)

The etch time cannot be solved analytically and symbolically is given by

t2(δ) = 
⌡

⌠

rbp

δ 1

 αk1C2(δ) + k2(C2(δ))
2

 
 dδ + t1(L1) (42)

A numerical solution of t1(δ) and t2(δ) is plotted in Figure 9(a). This solution is discussed in Section 4.5.

 4.3 Bubble to wedge

A heretofore unconsidered geometry is now introduced: the wedge. The bubble to wedge solution is useful for
characterizing the release etch of a large structure with etch ports on the top (Figure 1(g)). Application of the wet etch
model can be used to predict appropriate etch hole spacing. If etch ports are arranged in a square array, then the system can
be modeled by considering only one etch port. A close-up of a single etch port is shown in Figure 6. One of the assumptions
of this models is that neighboring etch ports can be considered independent of each other, so a single etch port and its
surrounding area can be used to describe the etch (Figure 6). The etch starts out in the bubble regime. Then, as all of the
bubbles from neighboring etch ports begin to touch, the etch continues in the wedge regime. Furthermore, because of
symmetry only one of four corner wedges  need be considered to analyze the problem. As etch proceeds in the wedge regime
the etch front angle, referenced to the center of the etch port, continually decreases until it becomes zero.
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s

s/ 2

π/ 4  –  θ/ 2

δθ/ 2

E tch opening B ubble W edge

r0

θ

Figure 6. Top view of etching through a single hole. The diagram to the right indicates the
conventions for calculating the arc angle θ.θ.

By inspection of the right triangle of Figure 6, the etch angle for the wedge solution is given by

θ = 
π
2 – cos–1





s

2δ (43)

For second order bubble to wedge kinetics the boundary total mass flux boundary is similar to Equation 39









Cb – C0

ln



r0

δbp

 = 
2θ(δ)

π  
δbp

δ  
1

2k2 
δ
D





 ln



δ

δbp

2 









–1 – (k1 + k2C0)



δ

D  ln



δ

δbp

+ 
1 + k1

2 



δ

D
2

 






 ln



δ

δbp

2

+ 2(k1 + k2C0) 



δ

D  ln



δ

δbp
  

(44)

However the slope of the concentration in the initial bubble region has been modified to reflect a logarithmic dependence. It
is difficult to solve for C

0
(δ) algebraically. And hence root functions of common mathematical software packages are

recommended. C
2
(δ) is given by

C2(δ) = 

–1 – k1



δ

D  ln






δ

 δbp
 + k1

2 



δ

D
2

 






 ln







δ

 δbp

2

 + 2(k1 + k2C0) 



δ

D  ln






δ

 δbp
 + 1 

2k2 
δ
D ln



δ

δbp

 (45)

C
2
(δ) can be considered a numerical function, hence t

2
(δ) will also be a numerical function. It is plotted in Figure 9(c), and

discussed in Section 4.5.

 4.4   Port to bubble to wedge

The combined port/bubble/wedge solution, which is useful for describing the entire etch process for a circular
diaphragm that is etched from its edges through rectangular ports. A schematic of the actual structure and the idealized
structure that is used for the model is shown in Figure 7, and a drawing of the port, bubble and wedge regimes is shown in
Figure 8. The modeled structure is a regular n-sided polygon, where n is the number of etch ports. The polygon is
circumscribed about the circle, and therefore has a larger area than the circle. Because of symmetry, only a single port is
considered. As n grows larger, the accuracy of the polygon approximation is expected to improve.
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actual structure modeled  structure

Figure 7. Actual structure (left) of port-to-bubble-to-wedge solution and idealized structure
(right) of model.

As a consequence of using a regular n-sided polygon for modeling, the etch fronts of the bubble regime are
semicircles. The etch progresses through the port and bubble regimes, as in the previous section. When all of the bubbles
from neighboring ports are joined, the etch proceeds into the wedge regime. This point in space–time will be referred to as
the break point (abbreviated by bp). One of the important features of the wedge solution is that the area of the etch front
continually decreases as the etch progresses. This can be expressed mathematically by constructing an angle θ which is a
function of δ. This angle, when multiplied by a radius and oxide height, describes the etch front area. A geometrical
construction of this system is shown in Figure 8(right).

For a system with n equally spaced ports, the following relationships are true

φ = 
2π
n θbp = 2φ δbp = R0 tan(φ/2) Rx = R0

2 + δbp
2  (46)

Where φ, θ, r, R0, and Rx are all conventions from Figure 8(right) and the subscript bp denotes the space–time point where
all of the bubbles have joined. Applying the law of sines to triangle abe yields

x = 
  sin(θ/2)  
 sin(φ/2)  δ (47)

and applying the law of sines to triangle bce yields
  sin(π/2 – θ/2)  

  Rx – x   = 
  sin(π/2 – φ/2)  

  δ   (48)

By removing x from the above two equations, a form for θ(δ) can be found

θ(δ) = 4 tan–1









δ cos



φ

2  – δ2 – 
sin2(φ)

4  



 

 R0
2 + δbp

2

sin



φ

2  




δ + cos



φ

2 R0
2 + δbp

2
 (49)

θ(δ) tends to zero as δ  tends to R0, which coincides with the complete consumption of the oxide.
Boundary conditions for this problem are C(r0) = C0 and C(δbp) = Cw. and the total mass flux is balanced over the

three regimes
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d1h1



 

 Jport  = πrh2



 

 Jbubble  = θrh2



 

 Jwedge

d1h1







– D 
∂C1

∂x  = πrh2







– D 
∂C2

∂r  = (rθ)h2







– D 
∂C3

∂r

 d1h1



C0 – Cb

L1
 = πrh2







1

r 
Cw – C0

  ln( )δbp /r0  
r=δbp

 = (rθ)h2 



A

r
r=δbp

 

(50)

By using the left two of these equations the following relationship is derived

C0(δ) = 
Cb ln



δbp

r0
 + γbCw

 ln



δbp

r0
 + γb

(51)

This form of C0 can be substituted into the right two equations to solve for Cw .  However, since A3 is similar to Equation 22
of the bubble solution, it is quite complicated, and Cw is generally solved numerically. A3 and C3 are given by

A3 = 
1

2k2 
δ
D 








 ln





δ

δbp

2
 









k1

2





δ

D

2









 ln





δ

δbp

2

 



 

 2k1 + 4k2Cw  
δ
D ln






δ

δbp

 – (k1 + 2k2Cw) 
δ
D ln






δ

δbp
 – 1

C3(δ) = A3ln(δ,δbp) + Cw

 (52)

Cw(δ) is solved numerically. The numerical solutions for the etch time is plotted in Figure 9(d).

port bubble wedge unetched
oxide

R x

x

δ bp

δ

δ

δ bp

R 0

θ/2

φ/2

0

a

b c

d

e

Figure 8. (Left)Progression of release etch for port to bubble to wedge system for n=8 ports (top view). Heavy
black lines indicate region considered for the wedge solution geometric construct at right. The wedge solution
begins after all of the bubbles from neighboring etch ports are joined. (Right) Geometric construct of wedge
solution. Half of a wedge being fed by an etch port is shown. Dimensions are accurate for n=8.

0 1.5 3 4.5 60

50

100

150Etch time [min]

E
tc

h 
di

st
an

ce
 [

µm
]

0 3 6 9 120

50

100

150Etch time [min]

E
tc

h 
di

st
an

ce
 [

µm
]

0 1 2 3 40

50

100

150Etch time [min]

E
tc

h 
di

st
an

ce
 [

µm
]

0 1 2 3 40

50

100

150Etch time [min]

E
tc

h 
di

st
an

ce
 [

µm
]

port 1

port 2

port

bubble

port

bubble

wedge

bubble

wedge

Figure 9.  Etch time vs Etch distance for complex solutions: (a) port to
port, (b) port to bubble, (c) bubble to wedge, and (d) port to bubble to
wedge. Geometric parameters are: h1=h2=1 µm. d1=10µm, d2=50 µm,
L1=50 µm, L2=100µm, R0=100 µm, s = 100 µm (bubble to wedge).
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 4.5 Discussion: complex geometries

The port to port solution, although having a discontinuous slope change, behaves as expected. Once the etch proceeds
from the first port to the second port, the etch front area is rapidly increased and requires more etchant, hence increasing
diffusion limitations and decreasing the etch rate. The port to bubble solution has a smoother transition and the etch rate in
the bubble regime rapidly decreases below the etch rate of the port to port solution, due to a continuously decreasing etch
front area. The combined bubble to wedge etch rate starts high, decreases, and then accelerates at the end. Again, this
acceleration is due to the rapidly diminishing etch front area of the wedge. The final solution, the port to bubble to wedge
also shows behavior similar to the concentric circles solution, however the etch rate flattens out much more in this solution,
due to the diffusion resistance of the etch port. It should be noted that all of the etch cases in Figure 9 have the same total
etch length, the etch times are very different.

The port to bubble to wedge solution is a good example of the importance of etch rate modeling. Etch rates inferred
from etching in the port regime would be drastically underestimated, whereas the converse would be true for etch rates
inferred from the bubble regime. Only by understanding the entire etch process can accurate etch times be predicted.
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